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INTERNATIONAL REVIEWS IN PHYSICAL CHEMISTRY, 1993, VOL. 12, NO. 1, 61-87 

Light scattering in the study 
of colloidal and macromolecular systems 

by P. JOHNSON 
Cavendish Laboratory, Madingley Road, 

Cambridge CB3 OHE, England 

The fundamentals of the traditional (integrated) light scattering method are 
reviewed together with the application to a variety of macromolecules of both 
corpuscular and asymmetric form. Brief mention is made of the application of 
optical methods to the investigation of particles comparable and larger than the 
wavelength of the light and of much higher refractive index. Usually termed Mie 
theory, this involves complex calculations which, in modern instruments, are 
performed by built-in computers. For much larger particles, Fraunhofer diffraction 
is available, which can be applied for particle dimensions up to 700 p. With the 
introduction of the laser, improvements in traditional light scattering became 
possible but more importantly, new possibilities arose which made use, particularly, 
of the coherence properties of laser radiation. Thus dynamic light scattering is 
concerned with the intensity fluctuations in time which arise from the various 
possible motions of the scattering particles. Special digital correlators have been 
introduced to measure the intensity correlation function as the delay time is varied 
over a large range of values. For spherical particles in dilute solution this gives 
accurate translational diffusion coefficients and a semi-quantitative measure of the 
polydispersity for a wide range of particle sues (from enzymes to viruses). For rod- 
like particles, in favourable cases, a rotational diffusion coefficient may also be 
determined and in the case of flexible chain-like molecules, information on the lower 
order internal modes of vibration may be obtained. For motile micro-organisms, 
new features on the correlation decay yield a measure of their velocity distribution. 
All these fields are in active development. 

1. Traditional light scattering 
1.1 Scattering in gaseous systems 

An interest in light scattering began more than 100 years ago (e.g. see Kerker (1969)) 
but the quantitative side of its study may be said to have begun with the work of Lord 
Rayleigh (Third Baron) (1871), probably inspired by the experiments of Tyndall (of the 
Tyndall cone). Rayleigh first treated the scattering of gases in terms of the old elastic 
solid theory of light, but later (1881) showed that the same results could be deduced 
from the electromagnetic theory of light. Assuming the scattering molecules to be small 
(cf A) isotropic spheres in chaotic motion, the oscillating electric field of the light 
induced in them oscillating dipoles in the same direction. These were responsible for the 
scattered radiation. Since, in a dilute gas, the scattering centres are randomly 
positioned, intensities could be summed leading to the well-known equation: 

where i, is the scattered intensity at a distance r from unit scattering volume (/ml) 
containing v particles, I ,  is the incident intensity, 1, is the wavelength in vacuo, c1 is the 
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62 P. Johnson 

polarizability and 0 is the angle between the incident and scattering directions. For 
practical purposes, where no absorption of the light occurs, tl is replaced by an 
expression involving only the refractive index (r.i.) n of the scattering particles, i.e. 

From (1) and (2), it follows that 

2n2(n - 1)2 1 
i,,r2/Io = - ( 1  +c0s2O). 

1: v (3) 

The left-hand side (1.h.s.) of this equation is usually known as Rayleigh’s ratio, R, and, 
providing calibration procedures are adequate (see Appendix A), can be evaluated in 
absolute terms. v, the number of scattering particles /ml can thus be derived since the 
other quantities appearing on the right-hand side (r.h.s.) are usually readily available. 
Further, since the weight concentration, c, (g/ml) may be written as v M / N , ,  it follows 
that the molecular weight ( M )  may be determined if Avogadro’s number ( N o )  is 
assumed. Alternatively, as was performed by earlier workers, if M is assumed then the 
Avogadro number, No, may be obtained. 

Although it was soon realized that Rayleigh’s theoretical work went far towards 
explaining the blue colour of the sky and the general properties of natural light, 
experimental proof of its more quantitative aspects had to await the development of 
more sophisticated techniques, particularly for the complete removal of dust from 
gases and for the avoidance of stray light. This was performed by Cabannes (1915) and, 
later, by the next Lord Rayleigh (Fourth Baron), 1918, who performed careful 
measurements on dust-free air and other gases. In the following years detailed work on 
the scattered intensity and the state of polarization of the scattered light was performed, 
in which Raman and other Indian workers played a prominent part. Thus Raman and 
Ramanathan (1923a) studying the scattering of those vapours and gases which did not 
obey Boyle’s Law, concluded that Rayleigh‘s law of scattering did not apply owing to 
the non-random distribution of the molecules. However using the Boltzmann 
distribution they were able to predict the magnitude of the deviations and showed that 
they were in agreement with those calculated from the Einstein-Smoluchowski 
fluctuation theory. The same authors (1923b) proceeded to evaluate the Avogadro 
number from the scattering by pure distilled water using the Einstein-Smoluchowski 
expression. 

1.2. Scattering in liquids and solutions 
Turning now to the scattering by liquids and liquid solutions, the much closer 

proximity and greater ordering of the molecules makes for very serious differences from 
gaseous scattering. These differences were in fact readily observed and in general the 
scattering from the liquid state is much weaker (approximately fiftyfold) than that from 
an equivalent mass of the vapour state. This arises from the destructive interference of 
light scattered by different but partially ordered molecules. If the ordering is made more 
complete, then the scattering becomes even smaller and theoretically zero in the case of 
a perfect crystal. Smoluchowski ( 1  908) treated the scattering from a pure liquid in terms 
of the ‘fluctuations’ occurring (from perfect order) in density which, in turn, gave rise to 
changes in dielectric constant and refractive index. Einstein (1910) extended these ideas 
to two-component liquids, each consisting of isotropic molecules whose dimensions 
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Light scattering study 63 

were small compared with the wavelength. Fluctuations could now occur not only in 
the density but also in the concentration of one component with respect to the other. 
For the systems of relevance here one component (the solvent) is usually present in 
great excess, the macromolecular or colloidal solute usually being present at a 
concentration less than 1 g/100ml. Under such circumstances the excess scattering of 
solution over the pure solvent may be related to the concentration fluctuations 
occurring and this led directly to the fundamental equation of light scattering, 

1 
M Kc/R,, = ~ + 2Bc, 

where 

K = 2~c~n;(dn/dc)~/N,A;. (4) 
no is the refractive index of the solvent and B is the coefficient of the concentration term 
(often termed the second Virial coefficient) relating osmotic pressure (n) to 
concentration: 

Here R is the gas constant and T the absolute temperature. B is known to reflect 
excluded volume effects as well as the occurrence of intermolecular forces between 
solute molecules. It is of interest that if the polarizability c1 in equation (2) had been 
written as (n2 - n;)/4nv, then providing n (the refractive index of the particles) is not very 
different from no (the r.i. of the solvent) an equation similar to equation (4) is obtained 
but without the term, 2Bc. In certain cases, this term may be ignored but in general its 
presence is accepted. Determination of molecular weight thus involves the determin- 
ation of R,, over a range of concentration and extrapolation to infinite dilution. Where 
the solute is polydisperse, it may readily be shown (see Appendix B) that the weight- 
average value, M,, is obtained (e.g. Doty and Edsall, (1951)). 

1.3. Scattering by particles with dimensions <I 
Equation (4) is applicable only if the solute molecules are isotropic and small 

compared with the wavelength ( < 1/20). For such materials the scattering molecules 
may be regarded as point sources. However when particle dimensions become 
comparable or greater than 1, this is no longer justifiable and an important 
consequence is that light scattered from different parts of the molecule is subject to 
phase differences at the detector and is thus involved in interference effects, particularly 
in directions for 6 > 90" (see figure 1 (a)). For situations in which the distortion of the 
electric field of the incident beam may be neglected (i.e. where the refractive index of the 
particle is not very different from that of the solvent), the total amplitude in a given 
direction is obtained by summing over all the volume elements of the particle. Debye 
(19 15) had performed such calculations in connection with X-ray scattering and later 
(1947) extended these to include light scattering by flexible chain-like macromolecules. 
He thus derived for the ratio of the intensity at angle 6, I (@) ,  relative to that, I(0) at 0" 
(or P(8)) the expression 

2 
X2 

P(O)=-[exp(-x)-(l -x)], 
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(4 
Figure 1. (a) Interference effects for particles whose dimensions are comparable with 

wavelength. Path difference (AB + BC - AC) is much smaller in the forward than the 
backward (AB + BD -AD) direction. (b) Plot of P(0) against suitable function ofmolecular 
dimension for: Coils, J x  = ksR,/J6, R,  = radius of gyration, Rods, x = ksL/2, L = length of 
rod, Spheres, x = ksQ/2, D = diameter. 
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Light scattering study 65 

where 

27c 
;1 

with k=-, s = 2 sin 8/2 (7) 

and R$ the average square end to end distance of the polymer chain. Other workers 
carried out similar calculations for other models (e.g. rods, ellipsoids of revolution) thus 
obtaining the so-called particle scattering factor, P(8), for each model. Figure 1 (b) 
demonstrates the dependence of P(6) on x (or ,/x) which contains not only 8/2 but also 
a characteristic dimension of the macromolecule (see Doty and Edsall, (1951)). In the 
general case Debye showed that P(0) may be written 

47cn0 P(6) = 1 - ( sin 8/2)2 R,2/3 + higher terms, 

where R, is the radius of gyration defined by (1/ V )  f r2d V (V being volume, with r being 
the distance from the centre of mass of the volume element dV) and higher terms 
involve average fourth (and higher) powers of distances within the particle. Knowledge 
of the variation of P(0) as a function of 8 can thus give information about the 
dimensions of the scattering particles (see later). It should be stressed that such P(6) 
factors are valid only where the particle refractive index is not too different from that of 
the solvent and its characteristic dimension (R) not too large compared with 
wavelength. These restrictions (often termed the Rayleigh-Gans limitations) are 
expressed quantitatively in the inequality, 

4nR 
+n-n,)<<l. 
10 

(9) 

If P(6) deviates significantly from unity, it is clear that R90 in equation (4) must be 
corrected to the value it would have in the absence ofinterference effects, R,,/P(90), and 
Zimm (1948) showed that under these circumstances equation (4) becomes (to a good 
approximation) 

(10) 
1 

M 
KcP(90)/R9, = - + 2BP(90)~. 

P(90) values may be obtained from measurements of the dissymmetry, z ,  (= io/ii80-o) 
through the various tabulations which are available (e.g. see Doty and Edsall(l951)). A 
plot of the 1.h.s. of equation (10) against c thus gives 1/M as an intercept on the ordinate, 
with 2BP(,,) as slope. 

A more general method, using biaxial extrapolation, was proposed by Zimm (1948). 
Since interference effects disappear at o", extrapolation to 0" from measurements at a 
range of higher angles avoids the use of a correction factor and makes full use of angular 
data. Zimm suggested a plot of Kc/R, v sin' (0/2)+ kc, where k is an arbitrary constant 
whose function is to spread out the data conveniently. An example is shown in figure 2. 
Two sets of nearly parallel lines occur, one at constant angle and varying concentration 
(the more horizontal), and the other at constant concentration and varying angle (the 
steeper). The varying concentration plots are extrapolated to strike a vertical ordinate 
at the particular values of sin28/2. The steeper plots are extrapolated to strike an 
ordinate set at kc. Thus two lines, corresponding to zero angle (with varying 
concentration) and zero concentration (with varying angle) respectively are obtained. 
On extrapolation these lines should intersect on the main ordinate axis to give 1/M. 
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66 P .  Johnson 

I 

Sin20/,+ 2 0 0 ~  

Figure 2. Zimm biaxial plot for toxin-antitoxin aggregate. 

Zimm pointed out also that the variation of Kc/Ro with angle contained essential 
information for determining the dimensions of the scattering particle. Thus it can be 
seen from equation (8) that 

(1 1 )  
Initial Slope of c=O line 16n2ng R ,  Intercept - -&) ’ 

where R, is the radius of gyration of the particle. For polydisperse systems, the R, value 
obtained would be a z average. 

In certain circumstances, the zero concentration line may reach a limiting slope at 
high values, and extrapolation to the ordinate axis yields l/M,, where M, is the 
number-average (Benoit, Holtzer and Doty (1954)). Correspondingly the slope may 
yield a different average of the radius of gyration. However doubts have been expressed 
regarding the practical realisation of such high extrapolation. 

Summing up, it may be said that where the Rayleigh-Gans limitations are obeyed, 
the Zimm method of biaxial extrapolation provides a very sound and complete 
utilisation of intensity measurements over a range of angles, giving an accurate 
molecular weight value and probably less accurate radius of gyration. If, however, the 
particle dimensions are less than 420, P(0) will not deviate far from unity, and equation 
(4) with corrected R,, values gives satisfactory M ,  values. Providing the solute 
refractive index does not deviate too far from that of the solvent (i.e. n/no < 1.2) an upper 
limit for the characteristic dimension is usually set at about lo4 A. For larger particles 
or those for which n/n,> 1.3, the more complex Mie theory has to be applied. 

1.4. Scattering in general 
As yet two classes of scattering particles only have been considered: 

(i) Rayleigh scatterers for which linear dimensions are much smaller than the 
wavelength of the light scattered (<1/20), and whose internal structure makes 
them isotropic, and 

(ii) Rayleigh-Gans particles for which equation (9) holds imposing conditions 
upon both particle dimensions and refractive index relative to the suspending 
solvent. 
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Light scattering study 67 

Undoubtedly these classes are important, covering many soluble synthetic and 
biological polymeric systems. However many materials possess n/no values larger than 
acceptable by equation (9), many possess dimensions much greater than Lo, and for 
others both factors together cause serious departures from equation (9). In addition 
many scattering materials (inorganic metals sols particularly) significantly absorb 
light, necessitating the introduction of complex refractive indices. 

Theoretical attempts to treat scattering in general go back more than 100 years and 
these have been well summarized by Kerker (1969). Of particular note are the 
contributions by Lorenz (1898), Mie (1908), and Debye (1909). More recently, in a very 
comprehensive treatment, van de Hulst (1957) has considered spheres covering a range 
of sizes and refractive indices as well as more complex shapes, and has attempted to 
relate the various approximations applying over restricted ranges of particle pro- 
perties. Figure 3, adapted from that of van de Hulst, illustrates these inter-relations. It 
will be observed that four labelled areas occur approximately centrally along the 
outside of the square and, for each of these, simplified (though different) methods of 
computation apply. Rayleigh and Rayleigh-Gans systems have already been de- 
scribed. Fraunhofer diffraction analysis (see below) is now routinely involved in 
commercially available equipment (e.g. Malvern, Coulter, Microtrac) and is capable of 
being applied to particles with linear dimensions up to 600 p and as low as 0 1  p. Total 
reflection involves high and often complex values of the refractive index. Whilst Mie 
theory can be applied to spheres of any refractive index, somewhat simpler methods are 
also available for many systems including perfect conductors as shown by van de Hulst 
(1957). In the various corner regions of figure 3, overlap of the larger areas mentioned 
above occurs and in any one such region the alternative approaches yield the same 
results. 

The interior of the square, where n/no and 27cR/L, take on higher values is the region 
where general Mie theory is extensively applied. This represents a fundamental 
application of the Maxwell electromagnetic equations, taking account of the refractive 

1 

1 
I 

n /no 

00 

Rayleigh 

Figure 3. The different regimes of light scattering (adapted from van de Hulst (1957)). 
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68 P. Johnson 

indices (including complex values) of the solvent and spherical particle and the 
dimensions of the latter. In reaching the equations for scattering, the boundary 
conditions at the particle-solvent interface are applied, involving assumptions of the 
continuity of the normal components of the dielectric displacement and magnetic 
induction and the tangential components of the electric and magnetic field. These 
equations are quite complex involving spherical Bessel functions and Legendre 
polynomials. However, several authors have utilised them numerically by computer 
(see Kerker (1969) for a listing) on spheres over a range of relative refractive indices and 
particle radii (in terms of 2.rdill) for angles ranging from 8=0" to 180" (5' intervals). 
Thus Pangonis and Heller (1960) list respectively the intensities of the components with 
electric vectors perpendicular and parallel to the scattering plane as well as the total 
intensity under the above conditions. Undoubtedly such tabulations have proved very 
useful but van der Hulst (1957), in particular has drawn attention to the dangers of 
interpolation where rapidly varying effects arise from slight changes in the varying 
parameters. With the advent of the modern computer with its ability to process 
numerical data rapidly, such interpolation can now be avoided as well as the need to 
consult tables. The computations, using the actual experimental parameters of the 
particular system being studied may be performed ab initio using programs which 
themselves contain the elements of Mie theory. 

Mie (1908) made his calculations on the basis of monodisperse spheres of 
homogeneous structure, but several workers have pointed out the relevance, parti- 
cularly amongst biological cells, of structured (or often coated) cells, in which the 
refractive index is not constant throughout. Thus Aden and Kerker (1951) and later 
Brunsting and Mullaney (1972) worked out the theory of such structures and made 
comparisons with real systems. Progress on cylindrical models has also been reported 
by van de Hulst (1957) and Kerker (1969), but the reader is directed to these references 
for further information. Whilst such models and further refinements introduce extra 
theoretical complication, it seems likely that computer power will undoubtedly make 
their widespread application possible in the near future. 

1.5. Fraunhofer difiaction analysis 
This subject should strictly be considered under diffraction rather than scattering, 

but since the particle size range covered complements the Mie range so conveniently, it 
is useful to consider the two approaches together. An apparatus of the type shown in 
figure 4 is used. Light from a low power (e.g. 2 mw) He-Ne laser is expanded to produce 
a parallel beam (of diameter up to 2cm) which falls upon a suspension of the test 
particles in a parallel sided glass cell. A lens, often called the Fourier lens, picks up light 
passing through the cell and brings it to afocus on a screen possessing an array of photo 
sensitive detecting elements. Light which passes undeviated through the cell is focused 
at the centre of the screen. Light diffracted by the suspended particles is deviated 
through an angle inversely proportional to the diameter of the assumed spherical 
particles and therefore for a monodisperse material appears with a maximum as a well- 
defined concentric ring on the detecting screen. For such a distribution, weaker 
concentric maxima occur at higher distances from the centre of the pattern (see e.g. 
Hecht (1987)). Particles of differing diameter produce maxima at different positions and 
the intensity distribution on the screen is a superposition of all the maxima and is 
therefore dependent on the size distribution of the suspended particles. The pattern 
observed on the screen is indeed the Fourier transform of the plane containing the 
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Expander 
V 1 Transmitted 7 

Diffracted 
Multi - Element 

Detect or 
I Suspension of 

Particles 
Fourier 

Lens 

Figure 4. Apparatus for Fraunhofer particle size analysis. 

diffracting particles. It should be emphasised that neither the precise position of the 
particles in the cell nor their motion suspension affect the position of their contribution 
to the overall pattern. The multi-element detector is able to assess the distribution of 
energy across the screen and thus to estimate the distribution of particle size in the 
suspension (see Swithinbank, Beer, Taylor and McCreath, 1977) for a discussion of the 
basic diffraction theory). In modern instruments the data from the detector is processed 
by computer so that a size distribution curve is produced in minutes. The lower size 
limit is approximately the wavelength of the light used and the upper limit is partly 
determined by the need to keep the particles in suspension. In the case of aerosols, 
which can be examined by this method, particles are kept suspended in a current of air. 

When the various optical methods (Rayleigh, Rayleigh-Gans, Mie, and Fraunhofer 
diffraction) are considered together, it is seen that by their use particle sizes from lo2 A 
to almost lo7,& can be investigated. In the remainder of this article, the first two 
methods will mainly be considered. 

1.6. Salient experimental features 
Since, in the general case, light scattering measurements over a range of angles and 

concentration are required, the equipment used has mainly been of the type illustrated 
in figure 5. A light source (usually a Hg discharge lamp with suitable filters or now a 
He-Ne laser) is used to provide a parallel beam of light which passes into a thermostatic 
bath (B) surrounding the cell, itself mounted precisely at the centre of rotation of the 
photomultiplier (PM) detection system. Not only does the bath provide constancy of 
temperature but it also minimizes reflections at the cell walls and elsewhere. Readings 
from the photomultiplier system are taken over a range of angles and particularly at the 
lowest possible angles in view of the subsequent extrapolation. Correction has to be 
made for the volume viewed and, unless the incident light is plane polarised, by the 
(1 +cos28) term. Calibration of the apparatus is conveniently carried out against 
careful spectrophotometer measurements on strong Rayleigh scattering systems or 
against secondary standards (see Appendix A). 

Several modern commercial versions of the apparatus shown in figure 5, which can 
also be used for dynamic light scattering, are available (e.g. Malvern, Coulter, 
Brookhaven, ALV-Langen Co.). A laser replaces the traditional mercury light source 
and a photon counting multiplier the simple nine-stage photomultiplier, but such 
equipment is quite suitable for integrated intensity measurements. To achieve very low 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
2
9
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



70 P .  Johnson 

scattering angles (< 15") the avoidance of stray light is of considerable importance and 
devices for achieving this have been described (e.g. Godfrey, Johnson and Stanley 
(1982)). 

A different approach was provided in the Chromatrix (now Milton Roy) KMX-6 
Low Angle Laser light scattering apparatus, where the scattered laser light at low 
angles (in the range 3"-7") is collected through an annular aperture in an opaque disc 
placed in the emerging light beam. By utilising the transmitted light also, the ratio of 
scattered to incident intensity is obtained and with P ( 0 ) z  1, absolute molecular weights 
may be obtained. With low-powered laser optics and special cell, small volumes of 
liquid only are required and the apparatus is well suited to the examination of the eluate 
from a chromatographic column. However great care is required in avoiding 
particulate debris from such columns which would have a preponderant effect at low 
angles. 

More recently the Dawn multi-angle laser light scattering instrument, equipped 
with an array of 15 photodiode detectors suitably distributed over a broad angular 
range (5"-175"), has been introduced. This arrangement gives a very complete intensity 
u angle envelope. With specially designed software, this data at several concentrations 
can be rapidly used to construct a Zimm plot, thus providing weight-average molecular 
weights and Z-average radii of gyration. The apparatus can also be used in a 'flow' 
mode following a chromatographic column with concentration measuring devices (e.g. 
ultraviolet absorption or refractive index), though the shedding of column material is a 
potential hazard. 

For molecular weights lower than 200 000, the most serious experimental problem 
lies in providing adequate clarification of the solutions studied. All traces of dust, 
fibrous impurities, and aggregation products must be removed, usually by repeated 
ultrafiltration or, if this is not possible, by ultracentrifugation. This requirement has 
probably been the chief cause of the method falling largely into disuse in the 
biochemical field over the years 1955-1975. So often, a new carefully fractionated 
material occurs in such small quantity that the necessary clarification procedures 
cannot be performed, and optical measurements on incompletely clarified solutions are 
not useful. 

1.7. Results 
Although integrated light scattering has not been greatly used recently, the method 

was used earlier to measure or confirm the molecular weights of many well-defined 
proteins and polymeric materials. Such values have been well tabulated (e.g. Stacey 
(1956), Tanford (1961)) and need not be repeated here. Suffice it to say that, for well- 
defined materials, light scattering molecular weights are in general agreement with 
those obtained by other techniques (particularly sedimentation and diffusion methods). 
Where doubt occurs, it is usually associated with difficulty in clarifying a solution 
sufficiently for light scattering requirements. The values range from low molecular 
weight enzymes ( w  10000) to viruses and nucleic acids (lo6-lo8). 

Radius of gyration values, obtained normally through equation (1 1) from Zimm 
plots of light scattering data, have also been reported for different types of polymeric 
material. For proteins this is practicable only for the more asymmetric molecules. The 
muscle protein, myosin, and tobacco mosaic virus with R ,  values of 468 8, and 924 8, 
respectively are typical examples (see Tanford (1961)). Linear synthetic polymers have 
been much investigated in this way. Thus it has been possible to show the increase in R ,  
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Light scattering study 71 

s1 s2 /- 

Figure 5. Typical traditional light scattering apparatus, S-light source, S,, S,-apertures, 
L,-lenses, B-thermostated bath, C+ell. PM-photomuliplier. 

with temperature for such polymers in a poor solvent and from the variation in R,  with 
molecular weight the stiffness of the chain structure could be assessed. Thus poly-v- 
benzyl-L-glutamate in chloroform-formamide at 25°C was shown to be rodlike (with 
R J M  constant) and polystyrene in butanone 22°C was randomly coiled (with R,/M l i 2  

constant). 

2. Properties of laser radiation 
The introduction of the laser has led to considerable improvements in classical light 

scattering techniques but, much more importantly, to fundamental extensions of the 
method. These have been termed dynamic or quasi-elastic light scattering but the terms 
intensity fluctuation spectroscopy, and photon correlation spectroscopy are also 
commonly used. In the remainder of this article, we shall be concerned with these 
developments, but first it is necessary to deal with the fundamental properties of laser 
radiation. For this purpose we will consider a continuous wave laser of the helium- 
neon or argon ion type. 

By the nature of the resonating laser cavity, a very obvious property is the ‘ready- 
made’ collimation of light which is achieved. Thus a beam divergence of 1 millirad is 
commonly quoted-this means that at a distance of 1 km. the laser would give an 
illuminated spot of 1 m diameter. With such collimation the angular resolution 
attainable in light scattering experiments is clearly superior to that obtained using gas 
discharge sources of light. Alongside this high degree of collimation, and with the 
concentration of power into a small area (e.g. 1 mm2), the intensity achieved in a simple 
gas laser is commonly four or five orders of magnitude greater than that for 
conventional sources. As to line width, with measures taken to ensure single mode 
operation, the frequency spread may be less than lo3 Hz (or Avlv z lo-’ 3), but without 
such measures many longitudinal (e.g. 10-20) and other modes may be operating so 
that a spread of about 1600 MHz may occur. Even so this is an order of magnitude 
better than is normally achieved with conventional sources and filters. 

However perhaps the most important property is the high degree of coherence of 
laser radiation, which arises from the mechanism of light amplification by stimulation 
of the emission of the radiation. Thus emitted photons are in phase with the exciting 
photon, and for a plane wave, the phase across any plane perpendicular to the direction 
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72 P. Johnson 

of propagation, is the same. The radiation is said to be spatially coherent. This is a 
fundamental requirement of the radiation in dynamic light scattering. 

A recent development is the use of diode lasers as light sources. With coherence 
properties somewhat poorer than those of conventional lasers but wavelengths as low 
as 670nm, such devices, which are now being actively developed, provide a much 
smaller and less expensive alternative. To achieve good collimation they require the use 
of cylindrical lens elements, and, for constancy of wavelength, a constant operating 
temperature. Undoubtedly diode lasers will eventually replace many of the lower 
powered conventional lasers now in use. 

3. Dynamic light scattering 
Ramachandran (1943) described the effect of placing a glass plate, upon which 

lycopodium powder was dusted, in the path of a light beam passing through it 
perpendicularly. A pattern of stationary spots was produced, but he suggested that if 
the scattering particles were to move then the pattern of spots would also change. He 
reported that Raman had suggested that such an approach could be used for the 
investigation of the Brownian motion of scattering particles. This suggestion has been 
completely confirmed by the development of dynamic light scattering. The modern 
counterpart of Ramachandran's experiment is to direct a laser beam through a 
polystyrene latex suspension (or a suspension of strongly scattering particles). If the 
emerging laser beam is allowed to fall upon a plane surface at a distance of 3 or 4 m, a 
pattern of randomly moving bright spots on a dark background is observed-the so- 
called 'speckle' pattern. Such a pattern may be thought of in terms of a set of Bragg 
reflections in which movement is caused by the Brownian movement of the scattering 
particles. If a small detector is placed on one of the bright speckles, then the intensity 
would be shown to vary irregularly (e.g. as in figure 6(a)Fhence the name used 
frequently of Intensity Fluctuation Spectroscopy. A detailed knowledge of the intensity 
fluctuations can be used to determine the nature of the motion of the scattering 
particles, as will be shown below. 

An alternative viewpoint is that the motion of the scattering particles imposes 
Doppler components on the initially sharply monochromatic incident wavelength and 
since the particles in Brownian motion are moving randomly, there will be a spread of 

7 
Figure 6.  (a) Plot of intensity, I ( t ) ,  a t  time ( t )  against time. (b) G(')(T) as function of z for intensity 

plot (a). 
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Light scattering study 7 3  

wavelength to both higher and lower values. The different wavelengths will, of course, 
beat amongst themselves giving the intensity fluctuations mentioned above. Spectrum 
analysers may be used to investigate such effects, and in certain types of work 
(particlarly electrophoresis) have been used very successfully in conjunction with multi- 
channel analysis or other recording devices (e.g. see Ware (1982)). However remarkable 
developments of the correlation method of investigating intensity fluctuations have 
taken place in the last 15 years. These involve sophisticated digital computing methods, 
of which a brief outline will be given below. Most applications of dynamic light 
scattering thus make use of a digital correlator which is merely a purpose-built 
computer. Such instruments are available commercially (e.g. Malvern Precision 
Instruments, Spring Lane, Malvern, Worcs., UK, Coulter Electronics Ltd., Luton, UK) 
and are being developed continuously. 

3.1. Theoretical principles 
Consider an irregularly fluctuating intensity of the type shown in figure 6 (a)-l(t) is 

the intensity at a given time t. The intensity behaviour may be described in terms of the 
intensity correlation function, G(2)(z), defined as 

Z(t)l(t+z)dt=(Z(t)Z(t+z)). 

Here T must be large and z small compared with the time required for the intensity to 
complete a cycle of variations, 7,. The angled brackets denote averaging over a time 
long compared to the cycle length. 

At very short values of z, Z(t) - Z(t + z), so that G(2)(z) approximates the mean value 
of I 2,  whereas at high z values, there will be no correlation between the I values; thus 
G(2)(z) approximates (1)’ as shown in figure 6(b). Variation of G(’)(z) occurs mainly 
over a time z, as is to be expected from its definition. It is convenient to normalize the 
correlation function by dividing by (Z)2 obtaining 

It can be shown (e.g. see Pusey and Vaughan (1975) that g ( 2 ) ( T )  may theoretically be as 
high as 2, though experimental factors may limit it to lower values: at high z values 
g(’)(z) approaches unity. The detailed variation of g”)(z) between its extremes depends 
upon the nature of the scattering system, and it is with the examination and 
interpretation of such variation that dynamic light scattering is concerned. 

In reality, with the usual experimental arrangements, numbers of photons, n,(t), 
arriving in a small sample time s centred at time t are measured and the various 
specialized computers or correlators evaluate the function (n,(t)n,(t + z))/( nJ2 at 
128-256 different values of z. Though it is not obvious, it can be shown that this 
function is identical with g’(z) as defined above i.e. 

Our concern has been as yet with the intensity correlation function since this is 
normally measured experimentally, but it is possible to construct a similar function, 
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74 P.  Johnson 

gl(z), in terms of the electric field which has theoretical advantages. Fortunately, for 
random scattering processes, the two correlation functions are simply related: 

g'(z) = (g2(z) - 1) l 'Z .  (15) 
Thus a determination of g(2)(r) also gives g(')(z) which can readily be related to the 
properties of scattering systems. It can be shown that g("(z) varies from the value 1 at 
low z to zero at long times. 

3.2. The scattering process 
Consider a plane monochromatic wave incident upon a collection of N similar, 

randomly placed scattering particles (figure 7 (a)). The process of scattering is 
conveniently treated in terms of the various wave-vectors. Let the incident wave-vector 
ki for which I kil = 27cn/A0, and that for the scattered wave k, with I kJ = 27cn/10, lo being 
the wavelength in vacuo, and n the refractive index of the medium. The scattering 
vector, K, is defined by 

K = ki- k,. (16) 
From figure 7 (b) 

2zn 47cn 
lKl= 2 -  sin 8 /2  =- sin 8/2. 

1 0  10 
Each particle will scatter light whose amplitude will usually be a function of 8 and time, 
or more generally A,(K, t), i referring to the particular particle and K = I KI. The factors 
determining A ,  are those already considered in connection with equations (1H3). The 
phase of each contribution will depend upon the particular position of the particle in 
question. Let us assume one particle at the point 0 in figure 7 (a) and another i at the 
position r i ( t )  relative to 0. Then from optical theory, the phase difference between them 
is given by the scalar product: 

K - ri(t). (18) 
Then the total amplitudes of the light scattered by all the particles is given by 

N 
E(K, t)oc 1 A,(K, t)exp [iK - ri(t)]. 

i = l  

Figure 7. (a) Light scattering geometry. (b) The relation of wave (k) and scattering vectors (K). 
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Light scattering study 75 

The numerator of the field autocorrelation function may then be written 
N N  

(-W, O)E*(K, t ) )  = ( A i ( K  O)Aj(K, t)exp {iK - [ri(0)- rj(t)l}. (20) 
i = l  j = 1  

This expression may appear formidable but for a dilute suspension of small (cf A) 
particles or larger spherical particles. 

Ai(K,O) = A@,  t )  = constant. 

A further simplification occurs on averaging when only those terms for which i = j  are 
retained. Thus the normalized field correlation function becomes 

g(’)(t)=(exp{iK-[r(O)-r(t)]})=(exp[iK*Ar(t)]), (21) 
where r(t) is the vector displacement of the particle in time t.To obtain the average of the 
exponential term, we make use of the expression 

exp (- r2/4Dt), 
1 

(47~Dt)~’’ 
P(r, t /O,  0) = 

where P(r, t /O,  0) is the probability of finding the particles, initially at the origin, at 
position r after time t ,  and D is the free particle diffusion coefficient (see Clark, 
Lunacek and Benedek (1970)). Thus we obtain? 

g(’)(t) = exp (- DK’t), (23) 

from which we observe that the time required, z,, for g l ( t )  to fall to l / e  times the initial 
value is 

1 1’ 
zc=- 

DKZ=D(4n:sin 812)’’ 

where I z  is the wavelength in the solution. But from kinetic theory (e.g. see Moelwyn- 
Hughes (1957)), the time required for a particle to diffuse a distance I z  is given by 1’/2D. 
Since 4n: sin 8/2 is of the order of unity, z, may be visualized as the time required for 
diffusion through a distance 1. If g(’)(t) can be evaluated through equation (15), then a 
plot of In g(’)(t) against t should give a straight line with slope - DK’, from which the 
value of the translational diffusion coefficient can be determined. It should be observed 
that since K is proportional to sin 0/2, then for a given D value, the exponential decay of 
g’(t)  is slower, the lower the angle of observation 0. 

3.3. The efect of polydispersity 
Equation (23) holds only for a dilute homogenous suspension of scattering particles 

with dimensions much smaller than A (i.e. Rayleigh scatterers) or somewhat larger 
particles of spherical shape. Frequently, however, though the particles may approxi- 
mate Rayleigh scatterers, they may vary considerably in size and correspondingly in 
diffusion coefficient. In such a situation we expect the larger D values to make the larger 
contribution at shorter times, so that a plot of lng’(t) against time would show 

t 2 has already been used as the argument of the field correlation function, g‘’). However, in 
much literature and in the remainder of this article t and 7 will be used interchangeably. 
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76 P .  Johnson 

curvature (as is commonly observed). In fact, as shown below, if the limiting slope at 
low t values can be determined it provides the z-average diffusion coefficient defined by 

N,M?D, 
D, = C N , M ;  ' 

where N i  is the number of molecules of molecular weight M i  and diffusion coefficient Di. 
This average arises from the fact that the scattering intensity from N i  molecules of 
molecular weight M i  is proportional to NiM? (see Appendix B). D, is a useful quantity 
which when combined with weight-average sedimentation coefficients yields a weight- 
average molecular weight (as long as the partial specific volume is constant throughout 
the sample). 

If it is assumed that there exists a distribution of diffusion coefficients, we can write 

(26) 

where P(D) is the distribution of diffusion coefficients weighted by the scattering 
properties of the different particles. We can also write for the mean diffusion 
coefficient, D. 

g(')(t)  = k ( D )  exp (- DK't) dD, 

s D= DP(D)dD. (27) 

Pusey (1974) showed by expanding the exponential in equation (26) about D that 

K4t2  +higher terms. (28) 
(02-D2) 

2 

If equation (28) can be fitted to a polynomial in K Z t  and the coefficients obtained, then 
the coefficient of the first two terms gives (9 - D2)/D2, i.e. the z-averaged normalized 
variance of the distribution of diffusion coefficients (later termed polydispersity factor 
(PF)). As would be expected, the quantity thus determined is of lower accuracy (f 0.02 
at best) than the diffusion coefficient (*2-5%) but particularly for the narrower 
distributions, it gives a useful measure of the distribution. Thus Pusey (1974) has shown 
that it can be related to other measures of polydispersity e.g. M J M ,  and M,/M,, the 
subscripts N ,  W, 2 indicating number, weight and Z averages. Experimental 
limitations prevent the useful utilization of the higher terms of equation (28). 

In g( ' ) ( t )=  - B K 2 t +  

3.4. Asymmetric and Jexible particles 
It was pointed out following equation (20) that for small particles and larger 

spheres, the scattering amplitude term was a constant, independent of angular position 
or time. However when the scattering particles become comparable in dimensions with 
wavelength (e.g. > 4 2 0 )  and deviate from spherical symmetry, then the scattering 
amplitude becomes a function of time i.e. Ai(K,  t).  This means that as a rigid particle 
rotates or a linear polymer vibrates, the intensity of scattering fluctuates, and this effect 
is additional to that already considered arising from the translational motion of the 
particle. 

For the rotation of rigid rod-like particles, the expression for g'(t) becomes 

g(')(t)= A,(K)exp (- DK't) + A , ( K )  

x exp [ -(DK' + 6D,)t] +other terms (29) 
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Light scattering study 77 

where A ,  and A ,  are K-dependent amplitudes, and D, is the rotational diffusion 
coefficient. Simplification results when the angle of observation is reduced to the lowest 
possible value (e.g. < 5"). Under such conditions, (i.e. where A,>>A,) the contribution 
of the rotational motion may be reduced to such a low level that only the effects of 
translational motion are observed (see Berne and Pecora (1976)). 

For flexible linear polymers in dilute solution. Pecora (1965) laid the foundations of 
dynamic light scattering in terms of the normal modes of vibration. Thus g'( t )  may be 
expressed as 

gl(t)=exp (- DK2t)[P, + P , ,  exp(-2t/zl) + Plz 

x exp (- t / z , )  + P,, exp (- 2t /zz )  + P ,  exp - 4t/z) + . . . I ,  (30) 
where z1 and z2 are the relaxation times of the first two normal modes and the relative 
amplitudes of these terms, (as for equation (29)) depend strongly on the parameter 
x = K2(R, ) , ,  R ,  being the radius of gyration of the polymer. For values of x =- 7 ,  terms 
in addition to those in equation (30), are required. Relaxation times may be expressed in 
terms of other polymer properties. Thus for non-draining chains (Zimm model) 

7, =0+347Mq,[q]/RT, (31 a) 

= 5.84qsR:/kT, (31 b) 
or 

where M and [q ]  are the molecular weight, and intrinsic viscosity, qs being the viscosity 
ofthe solvent, R and k being the gas constant and Boltzmann constant. Higher mode ( p )  
relaxation times for this model are given by 

zp  = T, /PI'S. (32) 
Relaxation time values obtained from equation (30) and similar equations may be 
compared with those calculated from equations (31) and (32) as well as from different 
models. This is however only profitable if g'(t) can be obtained over a large range o f t  
values. Examples of such systems are provided under Results. 

3.5. Scattering by  motile micro-organisms 
As yet, we have considered only those particle displacements which are caused by 

Brownian motion. If we turn to micro-organisms, then in addition to Brownian 
motion, we must consider the effects of their own motility which in many cases are 
much the greater. Equation (21) is still applicable to the effects of motility, but the 
displacement must now be written in terms of the motion of the organism. Where the 
velocity is constant over a distance long compared with K - (an effective wavelength or 
repeat distance for the experiment), then [r(O) - r(t)] may be replaced by Vt where V is 
the swimming speed. Then 

m 

g(')(t) = exp (iK-Vt)p(V)d3V, 
0 

(33) 

where P(V) is the velocity distribution for the organism and the integration is 
performed over all values of V. If the velocity distribution is completely isotropic, then 
equation (33) simplifies to 

OD sin KVt 
P(V) dV. (34) 
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78 P. Johnson 

Under some circumstances this equation may be inverted to give P(V) but more usually 
a single-parameter speed distribution is assumed (see Chen and Hallett (1982)) e.g. a 
Maxwellian distribution. Curve fitting on a computer can then give the distribution 
parameter and the complete velocity distribution. Normally, however, it is necessary to 
make allowance for a fraction of non-motile organisms which are undergoing only 
Brownian motion. A satisfactory curve-fitting computer programme will then give the 
fraction of motile organisms, the velocity distribution and its various derived 
properties, as well as the Brownian diffusion coefficient of the non-motile fraction 
(figures 17-1 9). 

However the assumption of isotropic velocity distribution cannot be be generally 
made. In many situations motion may be in a specific direction, straight-line motion 
may be interrupted by ‘twiddles’, and in other cases a spiral type of motion occurs. The 
study of all these complications has begun but space forbids its treatment here. A 
general point, however, should be made. When the particle is comparable in 
dimensions with A, is asymmetric and has a non-uniform refractive index, it may be 
necessary to combine measurements of intensity u angle with dynamic measurements. 
By comparing calculated intensity u angle curves with those computed from 
mathematical modelling, detailed optical properties may be derived which then allow a 
fuller treatment of the dynamic light scattering data (see Chen and Hallett (1982)). This 
however is a complex field in which Mie (1908) theory for spheres requires extension to 
the various particle shapes encountered. 

3.6. Application of the method 
In many features, the optical components of figure 8 are similar to those of figure 5. 

A coherent laser beam (15-100 mw) falls upon a small volume (1-2 ml) of the scattering 
suspension contained in a cell, carefully positioned in a thermostated water bath, 
provided with a plane entrance window and a cylindrical, good quality polycarbonate 
(or other transparent) exit window. The light scattered by a very small volume (005 ml) 
at a given angle (0) is collected by a carefully positioned slit system (possibly 
accompanied by a lens) and received on the small sensitive surface of a photon- 
counting photomultiplier tube (PM) (e.g. EM1 9863). With a fast recording device, it 

Figure 8. Apparatus for dynamic light scattering. 
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Light scattering study 79 

would be possible to observe irregular fluctuations in the scattering intensity 
comparable with those at a spot in the ‘speckle’ pattern mentioned earlier, but usually 
the signal from the photomultiplier proceeds to an amplifier-discriminator by which 
the output pulses are shaped (to 30ns width) and given appropriate amplitude (-2 V). 
These then proceed to the correlator, a purpose-built digital computer whose function 
it is to calculate the correlation function as defined by equation (13). For this purpose 
the correlator sets the duration of the experiment, the sample time, z, (from 
lop8 = s), counts the total number of samples, the total number of pulses, and 
calculates the product in the numerator of equation (14) for 128-256 values of the time 
delay, each a multiple of the sample time. The very large numbers are retained in 
various registers of the correlator and the progress of the experiment can be seen on an 
oscilloscope where the correlation products as a function of time are displayed. After a 
time, which may vary from a few seconds for strongly scattering systems (e.g. micro- 
organisms) to 30min for weakly scattering solutions of low molecular weight enzymes, 
the experiment is terminated. The output from the correlator is stored in a BBC or 
similar micro-computer and eventually transferred to a main frame computer (e.g. the 
IBM 3081) for calculation of normalized g(’)(t) values, for plotting ln(g(’)(t)- 1) against 
time, and determination of diffusion coefficients, variance of diffusion coefficients or 
other desirable features. In the most recent versions of the apparatus, signals from the 
photomultiplier are directed to a correlator-microcomputer combination equipped 
with suitable software so that the above computations (or alternatives) are produced 
‘on line’. 

Unlessthe scattering is very strong, it is necessary to ultra-filter solutions repeatedly 
to remove extraneous strongly scattering material. In this respect, dynamic light 
scattering does not differ from the classical version. However because the scattering 
volume is so small, it is possible to work with somewhat smaller volumes of clarified 
solution (e.g. 0.5 ml), though the author has reservations about the the use of capillary 
type cells owing to the optical distortions inevitably occurring then. 

3.7. Typical results 
Dynamic light scattering has been applied to numerous systems for the determin- 

ation of translational diffusion coefficients. Figure 9, a copy of the computer output for 
turnip yellow mosaic virus (TYMV), demonstrates the great precision of the data (see 
also Godfrey, Johnson and Stanley (1982)). Diffusion coefficients accurate to & 0.2% 
are obtainable for such strongly scattering systems. Further, figure 10 shows the 
constancy of the measured values over a large angular range, and figure 1 1 the variation 
of measured D values with concentration for different solution conditions. Similar 
sedimentation coefficient (Sozo) data was also obtained. Using Dozo  = 1.425 
x cmz s-’, and Sozo = 114.0 Svedbergs, with a partial specific volume of 0.661, a 

molecular weight of 5.73 x lo6 was obtained. For well-filtered TYMV preparations, the 
PF value achieved values as low as 0025 but less clarified solutions gave much higher 
values (even > 1). 

As an example of lower molecular weight solutes, figure 12 contains a plot of 
In [g”)(z)- 11 against channel number (i.e. z divided by sample time) for an enzyme, 
HMG Co-A Synthase (molecular weight =96 000) in which the precision of the data is 
clearly lower. At the other end of the range, figure 13 contains a plot of In [gz(z)- 11 
against number for tobacco mosaic virus (TMV-of molecular weight 42 x lo6) for 
d =  15” in phosphate buffer ( I  =0.0125) at pH 7.5 and 25°C (Johnson and Brown 1992. 
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QuFNl HUBER (SAMPLE TIME-yl.) 

Figure 9. Plot of In [g2(z)- 11 against channel number for TYMW at a concentration of 
0-32g(100ml)-' under neutral conditions. Sample time-2p. 
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Figure 10. Plot of diffusion coefficient, D,,,,, for TYMW at 25" in phosphate buffer (pH 6.5) 
against angle 8. U-sample time, 3 p .  A-sample time modified by factor 
(sin 4So/sin e/2)?. 

For this angle, only the first term of equation (29) is required so that the slope of the line 
gives the translational diffusion coefficient (D) directly. At higher angles both terms are 
required and by suitable curve fitting procedures assuming D from lower angles, the 
rotational diffusion coefficient, D,, could also be obtained. To achieve even modest 
accuracy (e.g. f 5%) in this, it was necessary to ensure that the coefficient A , ( K )  was an 
appreciable fraction of A,(K) by using as high a 8 value as possible. Figure 14 contains a 
plot of g'(z) against channel number for TMV at 90" and under solution conditions 
similar to those of figure 13 where experimental points as well as the fitted curve are 
shown. The translational diffusion coefficients, accurate to *0-5%, were found to 
decrease slowly with increasing TMV concentration but the much less precise DR 
values ( f 5%) showed no detectable concentration effect. 
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1 . 4 2 ’  
0 0.2 0.4 0.6 0.8 1.0 1.2 

TYMV CONCNfg/lOOmD 

Figure 11. Plot of corrected diffusion coefficient (Dzo,w) against TYMV concentration A, 
x - 0.1 M Acetate at pH 5.4: 0-Phosphate-NaC1 (I = 0.1) at pH 68: 0-Phosphate-NaC1 
( I  =0.24) at pH 7.3. 

-31) t . ,  , t . .  ~I-LL-Y--_~,,~--L.I..-LL-*.LII.-..~ 
0 20 40 00 00 loo 120 

CHAHYLHISER 

Figure 12. Plot of ln[g2(z)-1] against Channel number for HMG CO-A Synthase 
(0.78 g(lOOml)-’) in Phosphate-NaC1 buffer at I =0.1, pH =7.0. Sample Time-0.5 p. 
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Figure 13. Plot of ln(g'(7)- 1)  against channel number at  25" for TMV (0~119g(100mI)-') in 
phosphate buffer at I =0.0125, pH 7.5. Q= 15". Sample Time = 100 p. 
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Figure 14. Plot of g'(z) against channel number for TMV (0~067g(100ml)-1) in phosphate 

buffer at I = 0.0125, pH 7.5 at 25°C. Q = 90". Sample time = 5 ps + exptl points. Full line- 
computed curve with 0=4.70cm2 s - '  and DR-324s-'. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
2
9
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



Light scattering study 83 

Investigating the internal dynamics of long chain flexible molecules in solution is a 
much more difficult problem. From equation (30) it is clear that many unknown 
quantities are to be evaluated and, as in the case of TMV, a beginning usually involves 
the evaluation of the translational diffusion coefficient, usually at low angles. Nicolai, 
Brown and Johnsen (1989) investigated high molecular weight polystyrenes in both 
cyclohexane at the theta temperature (345°C) as well as in toluene and using a variety 
of sophisticated data handling techniques (including maximum entropy analysis and 
Contin) were able to estimate the relaxation time ( T ~ )  of the first internal mode. 
Difficulties in achieving accuracy are due to the small contribution of the internal 
modes at low x values, whereas at higher x, the methods available do not resolve the 
various modes. The value obtained was significantly lower than calculated from the 
polymer parameters for the non free-draining model of Gaussian chains, but in 
reasonable agreement with that obtained by other workers for similar material. The 
calculated value for the free-draining model was even higher and this model was not 
thought applicable. The authors concede that concentration effects on relaxation times 
have as yet been ignored but consider such effects will be small at the concentrations 
used ( N g ml- '). Much further work is proceeding along these lines. 

A further useful application of dynamic light scattering is to dilute suspensions of 
micro-organisms. Figure 15 contains a plot of g(')(z) against channel number at 8 = 90" 
for a suspension of spores of Bacillus Subtilis (Harding and Johnson 1984). Such spores, 
of dimensions 1.4 x 0.6 p, scatter very strongly and a curve comparable with figure 15 
could be obtained in 50s. Particles with dimensions greater than the incident 
wavelength cannot be treated as Rayleigh scatterers and this was confirmed when 
decay curves obtained over a range of angles showed new features. At low angles, part 
of the curve, at short times, assumed opposite curvature (see figure 17) and further work 
is required for its explanation. In the meantime, D values obtained at 90" should be 
regarded as relative only. Such a D value at 35°C in 0.01 8 M KC1-0.020 M Tris buffer at 
pH 8.2 was 5.0 x cm2 s-'. The Stokes radius derived from this value was 6300 A, 
which fits qualitatively the known spore dimensions. The polydispersity factor, PF, 

1.5 

n 1.4 
t 
v 
h 

v 
cu 
ED 

1.3 

1.2 

CHANNEL N U M B E R  
Figure 15. Computer plot for Q=90" of g 2 ( T )  against channel number for dilute (5 x lo7 part- 

icles ml- ') suspension of spores of Bacillus Subtilis in 0.018 MKC1-0.020 M Tris (pH 8.2). 
Sample time - 25 p. Temperature - 350°C. 
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Figure 16. Plot of apparent D, value against time after addition of 0.02M 1-alanine as 
germinant (different symbols denote repeated measurements). 
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Figure 17. Plot of g'(z) against Kt(microns-' s) for dilute (lo7 particlesml-') suspension of 
Trypanosoma brucei in Phosphate-buffered glucose containing 0.1 5% bovine serum 
albumin at 35°C. Sample t ime=40ps.  8=20". 

took on values of 0.10 f005 suggesting inhomogeneity probably due to aggregation. 
On addition of 0.02 M 1-alanine, such a spore suspension germinates and in figure 16, 
possible changes in the apparent D,, D, (app), values were investigated. Clearly no 
appreciable change occurs which would appear to exclude volume changes. 

A final example illustrates the effect of motility on correlation decay curves. The 
organism involved was Trypanosoma brucei brucei, an irregular-shaped thread-like 
organism of length 15-30 p and thickness 1.5-2.5 p, responsible for sleeping sickness in 
cattle in Africa. The motility of the organism, which can be seen by the optical 
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Figure 18. Velocity distribution derived by the computer fit to data of figure 17. 
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Figure 19. Plots of apparent r.m.s. velocity (0, m) and motile fraction (0) after addition of 
50 M Bromoacetyl-L-carnitine. Temperature - 35°C. 
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microscope, has a profound effect on correlation decay curves. Thus a pronounced 
Gaussian-type section occurs at low channel numbers followed by an exponential 
decay of the more usual kind. Figure 17 contains such a correlation decay plot for 35°C 
and 0 = 20°, the continuous line passing through the experimental points ( +) being that 
for the computer fit. The derived velocity distribution is shown in figure 18 for which 
the apparent r.m.s. velocity was 254 ps-l .  In view of the possible complications arising 
from the shape of the organism and details of the motion, the velocity quoted may have 
only relative value, but the usefulness of such data is shown in figure 19 (which shows 
the effect of a drug, bromoacetyl-L-carnitine (BAC) on both apparent r.m.s. velocity 
and fraction of motile organisms (see Gilbert, Klein and Johnson (1983)). Infectivity 
data is presented in the table inset. At 50 mM BAC concentration, infectivity would 
seem to be abolished at about loomin, by which time, the apparent velocity and 
fraction of motile o rgdsms  have fallen to a low level. 

Much more work is required in all the directions mentioned above. 
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Appendix A 
Calibration of light scattering instruments 

Much thought has been directed to this problem (e.g. see Stacey (1956), Hughes, 
Johnson and Ottewill(195Q Utiyama (1972)) and no universally agreed method has 
emerged. i0r2/1, is of the order of to and r is not readily measurable to 
desired accuracy, so that indirect methods have been devised. In addition to the, now, 
rarely used procedure of absolute calibration using magnesium oxide (and other) 
diffusors introduced by Brice, Halwer and Speiser (1950) two groups of methods are 
used: 

(1) The use of highly purified organic liquids (benzene, toluene, carbon disulphide, 
carbon tetrachloride) whose Rayleigh ratio has been accurately determined by 
specialized absolute methods (e.g. Coumou (1960), Pike, Pomeroy and 
Vaughan (1975)). This value would be assumed by workers in the field of light 
scattering who would purify their own sample of liquid and seal into a cell of 
high optical quality. The scattering of such liquids is normally of a much lower 
order than from polymeric or colloidal solutions, and the assumption of 
identity of scattering for two different samples of a given liquid is not 
completely satisfactory. 

(2) The use of a strongly scattering (often colloidal) but Rayleigh-type solution for 
which a definite relation between turbidity (or optical density) and R,, value 
may be assumed. The magnitude of the scattering can be adjusted to be similar 
to that of the solutions to be meausured. Optical density (O.D.) is obtained in a 
spectrophotometer accurate at low O.D. values and in which low angle 
scattered light is excluded by restricting apertures. This approach is self- 
contained in one laboratory and can be repeatedly performed. Uniform 
polystyrene latex particles in dilute suspension have been used satisfactorily in 
the author's laboratory. 
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Appendix B 
Averages in light scatterings 

NiM,” is effectively the weighting factor in light scattering experiments for molecules 
of molecular weight Mi. Referring to equation (3), the relevant factor for gaseous 
systems is (n  - l)’/v which for solution systems becomes (n - no)’/v or (An)’/v. But since 
Anccc for a given type of polymer and ci= v i M i / N 0 ,  the factor is proportional to viM? 
or NiM,”.  It should, however, be noted that the radius of gyration, R,, is obtained as a 
Z average. 
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